#math154#ωDF, and Ω after deep-space
secular and resonance perturbations have been applied.
Here SDP4 calls the periodics section of DEEP which adds the deep-space lunar
and solar periodics to the orbital elements (see Section Ten). From this
point on, it will be assumed that n, e, I, ω, Ω, and M
are the mean motion, eccentricity, inclination, argument of perigee, longitude
of ascending node, and mean anomaly after lunar-solar periodics have been
added.
Add the long-period periodic terms
#math155#
axN = e cosω
#math156#
β = #tex2html_wrap_indisplay4037#
#math157#
I LL = #tex2html_wrap_indisplay4041#(e cosω)#tex2html_wrap_indisplay4042##tex2html_wrap_indisplay4043##tex2html_wrap_indisplay4044#
#math158#
ayNL = #tex2html_wrap_indisplay4046#
#math159#
I LT = I L + I LL
#math160#
ayN = e sinω + ayNL.
Solve Kepler's equation for #math161#(E + ω) by defining
#math162#
U = I LT - Ω
and using the iteration equation
#math163#
(E + ω)i+1 = (E + ω)i + Δ(E + ω)i
with
#math164#
Δ(E + ω)i = #tex2html_wrap_indisplay4059#
and
#math165#
(E + ω)1 = U.
The following equations are used to calculate preliminary quantities needed
for short-period periodics.
#math166#
e cos E = axNcos(E + ω) + ayNsin(E + ω)
#math167#
e sin E = axNsin(E + ω) - ayNcos(E + ω)
#math168#
eL = (axN2 + ayN2)#tex2html_wrap_indisplay4068#
#math169#
pL = a(1 - eL2)
#math170#
r = a(1 - e cos E)
#math171#
#tex2html_wrap_indisplay4074# = ke#tex2html_wrap_indisplay4075#e sin E
#math172#
r#tex2html_wrap_indisplay4077# = ke#tex2html_wrap_indisplay4078#
#math173#
cos u = #tex2html_wrap_indisplay4080##tex2html_wrap_indisplay4081#cos(E + ω) - axN + #tex2html_wrap_indisplay4082##tex2html_wrap_indisplay4083#
#math174#
sin u = #tex2html_wrap_indisplay4085##tex2html_wrap_indisplay4086#sin(E + ω) - ayN - #tex2html_wrap_indisplay4087##tex2html_wrap_indisplay4088#
#math175#
u = tan-1#tex2html_wrap_indisplay4090##tex2html_wrap_indisplay4091##tex2html_wrap_indisplay4092#
#math176#
Δr = #tex2html_wrap_indisplay4094#(1 - θ2)cos 2u
#math177#
Δu = - #tex2html_wrap_indisplay4096#(7θ2 -1)sin 2u
#math178#
ΔΩ = #tex2html_wrap_indisplay4098#sin 2u
#math179#
Δi = #tex2html_wrap_indisplay4100#sin iocos 2u
#math180#
Δ#tex2html_wrap_indisplay4102# = - #tex2html_wrap_indisplay4103#(1 - θ2)sin 2u
#math181#
Δr#tex2html_wrap_indisplay4105# = #tex2html_wrap_indisplay4106##tex2html_wrap_indisplay4107#(1 - θ2)cos 2u - #tex2html_wrap_indisplay4108#(1 - 3θ2)#tex2html_wrap_indisplay4109#
The short-period periodics are added to give the osculating quantities
#math182#
rk = r#tex2html_wrap_indisplay4111#1 - #tex2html_wrap_indisplay4112#k2#tex2html_wrap_indisplay4113#(3θ2 - 1)#tex2html_wrap_indisplay4114# + Δr
#math183#
uk = u + Δu
#math184#
Ωk = Ω + ΔΩ
#math185#
ik = I + Δi
#math186#
#tex2html_wrap_indisplay4119# = #tex2html_wrap_indisplay4120# + Δ#tex2html_wrap_indisplay4121#
#math187#
r#tex2html_wrap_indisplay4123# = r#tex2html_wrap_indisplay4124# + Δr#tex2html_wrap_indisplay4125#.
Then unit orientation vectors are calculated by
#math188#
#tex2html_wrap_indisplay4127# = #tex2html_wrap_indisplay4128#sin uk + #tex2html_wrap_indisplay4129#cos uk
#math189#
#tex2html_wrap_indisplay4131# = #tex2html_wrap_indisplay4132#cos uk - #tex2html_wrap_indisplay4133#sin uk
where
#math190#
#tex2html_wrap_indisplay4135# = #tex2html_wrap_indisplay4136##tex2html_wrap_indisplay4137##tex2html_wrap_indisplay4138#
#math191#
#tex2html_wrap_indisplay4140# = #tex2html_wrap_indisplay4141##tex2html_wrap_indisplay4142##tex2html_wrap_indisplay4143#.
Then position and velocity are given by
#math192#
#tex2html_wrap_indisplay4145# = rk#tex2html_wrap_indisplay4146#
and
#math193#
#tex2html_wrap_indisplay4148# = #tex2html_wrap_indisplay4149##tex2html_wrap_indisplay4150# + (r#tex2html_wrap_indisplay4151#)k#tex2html_wrap_indisplay4152#.
A FORTRAN IV computer code listing of the subroutine SDP4 is given below.
These equations contain all currently anticipated changes to the SCC
operational program. These changes are scheduled for implementation in March,
1981.
#center4153#